Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature
نویسنده
چکیده
Lowering the operating temperature of solid oxide fuel cells (SOFCs) to the intermediate range (500–700 oC) has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.
منابع مشابه
Investigation the performance of solid oxide fuel cells and the role of nanotechnology in its construction
Nanotechnology is well used in the development and performance improvement of solid oxide fuel cells (SOFCs). The high operating temperature of SOFCs (700-900 ° C) has led to serious shortcomings in their overall performance and durability. Hence, the high operating temperature has been reduced to the average temperature range of approximately 44-700 Celsius, which has improved performance and ...
متن کاملLa0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for Intermediate Temperature Solid Oxide Fuel Cells: A comparative study
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
متن کاملLattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کاملSimulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...
متن کاملDetailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled u...
متن کامل